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Abstract. We show that a new expansion, which sums seagull and bubble graphs to all orders, can be
applied to the O(N) linear σ-model at finite temperature. We prove that this expansion can be renormalized
with the usual counterterms in a mass independent scheme and that Goldstone’s theorem is satisfied at
each order. At the one loop order of this expansion, the Hartree result for the effective potential (daisy
and superdaisy graphs) is recovered. We show that at one loop 2PPI order, the self-energy of the σ-meson
can be calculated exactly and that diagrams are summed beyond the Hartree approximation.

1 Introduction

In this paper, we will study the O(N) linear σ-model at
finite temperature, using the 2PPI expansion [1,2]. This
expansion can be obtained from the 1PI loop expansion
by deleting all diagrams which become disconnected when
two lines meeting at the same point are cut. The O(N) lin-
ear σ-model has always been a fertile ground to test ideas
and check approximations in finite temperature quantum
field theory [3] and has recently attracted renewed inter-
est [4–11] because of its relevance to the thermodynam-
ics of chiral symmetry in QCD. Many treatments of the
finite T O(N) linear σ-model use the Hartree approxi-
mation which sums bubble graphs (daisy and superdaisy
graphs). The standard way of summing these graphs is to
use the 2PI expansion or CJT method [12]. In this ap-
proach, only the 2PI diagrams are retained, which do not
separate in two pieces when two internal lines are cut.
This sums self-energy insertions but comes at the cost of
introducing a self-consistency condition which in general
entails intractable non-local integral equations. When re-
stricted to order λ, the 2PI expansion sums daisy and
superdaisy graphs which alleviates some of the problems
at finite T [4]. However, it is very difficult to extend this
approach analytically to higher order in λ, and therefore
some of the basic problems of the O(N) linear σ-model
at finite T are still unsolved (see however [11,21] for some
approximate treatments). Another problem encountered is
renormalizability. In [4], the daisy and superdaisy graphs
are summed with the 2PI expansion at O(λ), using bare
perturbation theory. It is found that the effective bubble
mass is finite when the coupling constant runs according
to a “non-perturbative” β function which does not agree
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with the perturbative one. For N = ∞, these two β func-
tions coincide and for this reason, many treatments of the
finite T O(N) linear σ-model use the N → ∞ limit. One
can ask oneself if these are genuine renormalization prob-
lems or just problems due to inconsistent renormalization.
Finally, there is the Goldstone theorem at finite T . Al-
though originally there were some papers claiming that
Goldstone’s theorem was violated at finite T , there is now
ample evidence [6,10,13] that it is valid at all tempera-
tures. It would however be preferable to have a simple all
orders proof of this important fact. In this paper, we will
address these problems using the O(N) linear σ-model as
a simple model of spontaneous symmetry breaking.

2 The 2PPI expansion

The 2PPI expansion is an approximation scheme for cal-
culating the effective action for local composite operators.
It was introduced in [1] for λφ4 theory with composite
operator φ2. The corresponding effective potential can be
viewed as the minimum of the energy density within the
class of wavefunctionals with fixed expectation values for
the elementary fields and one or more local composite op-
erators. Minimization with respect to the values of the
composite operators yields gap equations which sum infi-
nite series of Feynman diagrams. In the case of the 2PPI
expansion with local composite operators quadratic in the
fields, the gap equations sum bubble graphs, sometimes
also called tadpole graphs. The 2PPI expansion is to the
effective action for a local composite operator what the
1PI expansion is to the ordinary effective action for ele-
mentary fields or what the 2PI expansion (or CJT formal-
ism [12]) is to the effective action for a bilocal composite
operator. In this section, we will derive the 2PPI expan-
sion for theO(N) linear σ-model with composite operators



772 H. Verschelde, J. de Pessemier: Study of the O(N) linear σ model at finite temperature using the 2PPI expansion

Fig. 1. Generic 2PPR diagram

Fig. 2a,b. The 2PPR part is shaded, the 2PPI rest is ear-
marked

φi(x)φj(x). Our derivation will not use the formalism of
effective actions and Legendre transforms [14], but will be
more directly based on Feynman diagram analysis. This
will enable a transparent proof of renormalizability as one
of us has shown for λφ4 [2].

Our Lagrangian reads

L =
1
2
∂µφi∂µφi +

m2
ij

2
φiφj +

λ

8
(φii)2 + δL (1)

=
1
2
∂µφi∂µφi +

m2
ij

2
φiφj +

λijk�

4!
φiφjφkφ� + δL,

with
λijk� = λ(δijδk� + δikδj� + δi�δjk), (2)

and describes the O(N) linear σ-model for m2
ij = m2δij .

In this section, we will treat the unrenormalized 2PPI ex-
pansion and hence neglect all contributions from the coun-
terterm Lagrangian. The way to get to the 2PPI expansion
is to start from the 1PI expansion and sum all the seagull
and bubble graphs. These insertions arise in 2PPR or two
particle point reducible graphs because they disconnect
from the rest of the diagram where two lines meeting at

the same point (the 2PPR point) are cut (Fig. 1). We no-
tice that seagull and bubble graphs contribute to the self-
energy as effective mass terms proportional to ϕiϕj and
∆ij = 〈φiφj〉c respectively. The external field ϕ can be
generally space-time dependent. A short diagrammatical
analysis suggests that all 2PPR insertions can be summed
by simply deleting the 2PPR graphs from the 1PI expan-
sion and introducing the effective mass,

m2
ij = m2

ij + λ[ϕiϕj +∆ij ] +
λ

2
[ϕ2 +∆kk]δij , (3)

in the remaining 2PPI graphs. This is too naive though,
since there is a double counting problem which can be eas-
ily understood in the simple case of the two loop vacuum
diagram (daisy graph with two petals) of Fig. 2a. Each
petal can be seen as a self-energy insertion in the other,
so there is no way of distinguishing one or the other as the
remaining 2PPI part. The trick which solves this combina-
torial problem is to earmark one of the petals by applying
a derivative with respect to ϕk (Fig. 2b). This fixes the
2PPI remainder (which contains the earmark) in a unique
way. Now, there are two ways in which the derivative can
hit a ϕ field. It can hit an explicit ϕ field which is not
a wing of a seagull (partial derivative ∂/∂ϕ in (4) means
functional derivative with respect to the explicit ϕ depen-
dence) or it can hit a wing of a seagull or implicit ϕ field
hidden in the effective mass. We therefore have

δ

δϕk
Γ 1PI

q (m2, ϕ) =
∂

∂ϕk
Γ 2PPI

q (m2, ϕ)

+ [λϕkδij + λ(δikϕj + δjkϕi)]
∂Γ 2PPI

q

∂m2
ij

(m2, ϕ), (4)

where Γ 1PI = S(ϕ) + Γ 1PI
q or using the equation for the

effective mass:
δ

δϕk
Γ 1PI

q (m2, ϕ) =
δ

δϕk
Γ 2PPI

q (m2, ϕ)

−
[
λ
δ∆ij

δϕk
+
λ

2
δij
δ∆��

δϕk

]
∂Γ 2PPI

q

∂m2
ij

(m2, ϕ). (5)

Using the same type of combinatorial argument, we have

∂Γ 1PI
q

∂m2
ij

(m2, ϕ) =
∂Γ 2PPI

q

∂m2
ij

(m2, ϕ), (6)

and since
∆ij

2
=
∂Γ 1PI

q

∂m2
ij

(m2, ϕ), (7)

we find the following gap equation for ∆ij :

∆ij

2
=
∂Γ 2PPI

q

∂m2
ij

(m2, ϕ). (8)

The gap equation (8) can be used to integrate (5) and we
finally obtain

Γ 1PI(m2, ϕ) = S(ϕ) + Γ 2PPI
q (m2, ϕ)

−λ
8

∫
dDx

(
(∆ii)2 + 2(∆ij)2

)
. (9)
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This equation gives the 1PI effective action in terms of the
2PPI effective action and a term which corrects for double
counting. The 2PPI effective action is just the 1PI effective
action without 2PPR graphs and with the effective mass
given by (3) running in the internal lines. Form2

ij = δijm2

we can make use of O(N) symmetry to define

m2
ij =

ϕiϕj

ϕ2 m
2
σ +

(
δij − ϕiϕj

ϕ2

)
m2

π, (10)

and

∆ij =
ϕiϕj

ϕ2 ∆σ +
(
δij − ϕiϕj

ϕ2

)
∆π, (11)

so that the equation for the effective masses can be written
as

m2
σ = m2 +

3λ
2

[
ϕ2 +∆σ +

N − 1
3

∆π

]
,

m2
π = m2 +

λ

2
[
ϕ2 +∆σ + (N + 1)∆π

]
. (12)

The relation between 1PI and 2PPI expansion now sim-
plyfies to

Γ 1PI(m2, ϕ) = S(ϕ) + Γ 2PPI
q (m2

σ,m
2
π, ϕ) (13)

−λ
8

∫
dDx

[
3∆2

σ + (N2 − 1)∆2
π + 2(N − 1)∆σ∆π

]
,

and the gap equations are

δΓ 2PPI

δm2
σ

=
∆σ

2
, (14)

δΓ 2PPI

δm2
π

= (N − 1)
∆π

2
.

Two remarks are in order here. The derivation given above
is independent of temperature, so the relation (13) is also
valid at finite T . Secondly, the masses m2

σ and m2
π are

2PPI effective masses. The physical σ and π masses m2
σ

andm2
π still have to be calculated from the effective action

(as poles of the propagators) and are not identical to these
2PPI effective masses.

3 Renormalization of the 2PPI expansion

To be useful for practical calculations, we have to show
that (4) which relates 1PI and 2PPI expansions and the
gap equations (8) can be renormalized with the conven-
tional counterterms. The crucial point in the proof of (4)
and (8) was that the 2PPR insertions could be exactly
summed via the effective 2PPI mass given in (3). For this
to remain true after renormalization, we have to use a
mass independent renormalization scheme. Therefore, in
this paper, we will use minimal subtraction. Again, just
as in the previous section, we will earmark the 1PI graphs
by applying a ϕ derivative so that the 2PPR and 2PPI
parts are unambiguous.

Fig. 3a–f. Generic bubble (shaded) and its subdivergences
(shaded). Thick lines are full propagators

We first renormalize the bubble subgraphs. Consider a
generic bubble inserted at the 2PPR point x (Fig. 3a). All
primitively divergent subgraphs of the bubble graph which
do not contain the 2PPR point x can be renormalized with
the counterterms of the O(N) linear σ-model:

δL = δZ
1
2
∂µφi∂µφj +

1
2
δZij;k�

2 m2
ijφkφ� (15)

+
λ

4!
δZijk�

λ φiφjφkφ�,

where

δZijk�
λ = δZλ (δijδk� + δikδj� + δi�δjk) . (16)

As a consequence of these subtractions, the contribution
of the bubbles to the effective mass is proportional to
〈φiφj〉c where the connected VEV is now calculated with
the full Lagrangian, counterterms included. For subgraphs
of the bubble which do contain the 2PPR point x, we
need only the 2PPR parts of the counterterm. This means
that those parts which correspond to subtractions for sub-
graphs which disconnect from the rest of the graph when
two lines meeting at the 2PPR point x are cut. Let us
first renormalize the proper subgraphs of the bubble which
contain x. Their generic topology is displayed in Figs. 3b,c.
They can be made finite with the 2PPR part (1/2!)2

δZij;k�
λ,2PPRφiφjφkφ� where the lines meeting at the 2PPR

point x carry the O(N) indices i and j. Their contribution
to the effective massm2

ij is given by (1/2)δZij;k�
λ,2PPR〈φkφ�〉c.

We still have to subtract the overall divergences of the
bubble graph. Their generic topology is displayed in
Figs. 3d,e for coupling constant renormalization and
Fig. 3f for mass renormalization. Again only
the 2PPR parts of the counterterm contributions have
to be included and the overall divergences contribute
(λ/2)δZij;k�

λ,2PPRϕkϕ� + δZij;k�
2,2PPRm

2
k�. Adding the various
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Fig. 4a,b. Generic diagram for mass renormalization a and
generic 2PPR coupling constant renormalization diagram b

contributions coming from renormalizing the bubble graphs,
we find for the renormalized effective mass

m2
R,ij = m2

ij + λ [ϕiϕj +∆ij ] +
λ

2
[
ϕ2 +∆kk

]
δij

+ δZij;k�
2,2PPRm

2
k� +

λ

2
δZij;k�

λ,2PPR [∆k� + ϕkϕ�] , (17)

where ∆ij = 〈φiφj〉c and the VEV is calculated with in-
clusion of the counterterms.

Because we use a mass independent renormalization
scheme, the 2PPR part of coupling constant renormal-
ization can be related to multiplicative mass renormal-
ization. Indeed let us consider a generic diagram for mass
renormalization which is proportional tom2

pq (Fig. 4a). On
the other hand, let us consider in Fig. 4b a generic 2PPR
coupling constant renormalization graph inserted at the
2PPR point x. The latter can be gotten from the former
by replacing the mass m2

pq by the coupling constant λpqij

and summing over p and q. Therefore, we have

λδZij;k�
λ,2PPR = λ (δijδpq + δipδjq + δiqδjp) δZpq;k�

2 , (18)

or
δZij;k�

λ,2PPR = δijδZ
pp;k�
2 + 2δZij;k�

2 . (19)

In an analogous way, we can relate the 2PPR part of mul-
tiplicative mass renormalization to vacuum energy renor-
malization. In minimal subtraction, vacuum diagrams are
logarithmically divergent and proportional to m4. Their
divergences are canceled with the counterterm:

δEvac =
1
2
m2

ijm
2
k�δζ

ij;k�. (20)

A generic divergent vacuum graph proportional to m4 is
given in Fig. 5a. A generic 2PPR part of mass renormal-
ization is given in Fig. 5b. Just as in the previous case, it
is clear that

δZij;k�
2,2PPR = λ (δijδpq + δipδjq + δiqδjp) δζpq;k�, (21)

or
δZij;k�

2,2PPR = λ
(
δijδζ

pp;k� + 2δζij;k�
)
. (22)

Fig. 5a,b. Generic divergent vacuum diagram a and generic
2PPR mass renormalization diagram b

Using (19) and (22) the renormalized effective mass
given by (17) can be written as

m2
R,ij = m2

ij + λ
[
Zij,k�

2 (ϕkϕ� +∆k�) + 2δζij;k�m2
k�

]
,

+
λ

2

[
Zpp;k�

2 (ϕkϕ� +∆k�) + 2δζpp;k�m2
k�

]
, (23)

where

Zij;k�
2 =

1
2

(δikδj� + δi�δjk) + δZij;k�
2 . (24)

If we introduce the renormalized local composite operators

〈φiφj〉c,R = ∆ij,R (25)

= Zij;k�
2 ∆k� + δZij;k�

2 ϕkϕ� + 2δζij;k�m2
k�,

the renormalized effective mass finally becomes

m2
R,ij = m2

ij + λ (ϕiϕj +∆R,ij)

+
λ

2
(
ϕ2 +∆R,kk

)
δij . (26)

From this equation, it follows that ∆R,ij must be finite.
Once we have renormalized the bubble subgraphs, the

ϕ derivative of Γ 1PI
q can be written as

δ

δϕk
Γ 1PI

q,BR =
∂

∂ϕk
Γ 2PPI

q (m2
R,ϕ) (27)

+ [λϕkδij + λ (δikϕj + δjkϕi)]
∂Γ 2PPI

q

∂m2
R,ij

(m2
R,ϕ),

where BR stands for bubble renormalized. Because there
is no overlap, having renormalized the bubble subgraphs,
we can now renormalize the 2PPI remainder (which con-
tains the earmarked vertex). Let us first consider mass
renormalization. A subgraph γ in the 2PPI remainder
of (δ/δϕk)Γ 1PI

q,BR that needs mass renormalization can be
made finite with a counterterm δZij;k�

2 (γ)m2
ijφkφ�/2.

However, for any such subgraph γ, there are subgraphs
γ′ obtained from γ by replacing the mass m2

ij with a
seagull or renormalized bubble. These subgraphs require
coupling constant renormalization which entails a coun-
terterm δZij;k�

λ,2PPR(λ/2)(ϕiϕj +∆R,ij)φkφ�/2. Taking into
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account the identity (19) of renormalization constants for
mass renormalization and 2PPR coupling constant renor-
malization, the effective counterterm for the mass-type di-
vergent subgraphs adds up to:

1
2
δZij;k�

2 (γ)m2
ijφkφ� +

1
2

(
δijδZ

pp;k�
2 (γ) + 2δZij;k�

2 (γ)
)

×λ
2

(ϕiϕj +∆R,ij)φkφ�,

=
1
2
δZij;k�

2 (γ)

×
[
m2

ij + λ[ϕiϕj +∆R,ij ] +
λ

2
(ϕ2 +∆R,��)δij

]
φkφ�

=
1
2
δZij;k�

2 (γ)m2
R,ijφkφ�, (28)

which is exactly what is needed for mass renormalization
of Γ 2PPI

q (m2
R,ϕ) in the right hand side of (27). The remain-

ing divergent subgraphs need wave function renormaliza-
tion or are of the coupling constant renormalization type
that cannot be generated by inserting seagulls or bubbles
in mass-type divergent subgraphs. They are made finite
by counterterms independent of mass and hence are the
same for the left and right hand sides of (27). Therefore
we can conclude that in a mass independent renormaliza-
tion scheme, (4) can be renormalized with the available
counterterms by

δ

δϕk
Γ 1PI

q,R (m2, ϕ) =
∂

∂ϕk
Γ 2PPI

q,R (m2
R,ϕ)

+ [λϕkδij + λ(δikϕj + δjkϕi)]
∂Γ 2PPI

q,R

∂m2
R,ij

. (29)

To proceed, we have to renormalize the gap equations
(8). Using essentially the same arguments as in the previ-
ous paragraphs, we find that

∂Γ 1PI
q,R

∂m2
ij

(m2, ϕ) =
∂Γ 2PPI

q,R

∂m2
R,ij

(m2
R,ϕ). (30)

From the path integral, we readily obtain

∂Γ 1PI
q,R

∂m2
ij

(m2, ϕ)

=
1
2
Zij;k�

2 (ϕkϕ� + 〈φkφ�〉c) +
∂

∂m2
ij

δEvac

=
1
2

(
ϕiϕj + Zij;k�

2 ∆k� + δZij;k�
2 ϕkϕ� + 2δζij;k�m2

k�

)
=

1
2

(ϕiϕj +∆R,ij), (31)

where we used (20) and (25). Since Γ 1PI
R is finite it fol-

lows that ∆R,ij is finite. This reconfirms our analysis of
bubble renormalization where from the finiteness of the
renormalized effective mass (see (26)), we concluded that
∆R,ij defined by (25) is finite. Using (∂/∂m2

ij)Γ 1PI
R =

ϕiϕj/2+(∂/∂m2
ij)Γ 1PI

q,R and (30) and (31) we finally obtain
the renormalized gap equations

∆R,ij

2
=
∂Γ 2PPI

q,R

∂m2
R,ij

(m2
R,ϕ). (32)

As in the unrenormalized case, these gap equations can be
used to integrate (29):

Γ 1PI
R (m2, ϕ) = S(ϕ) + Γ 2PPI

q,R
(
m2

R,ϕ
)

−λ
8

∫
dDx

[
(∆R,ii)2 + (2∆R,ij)2

]
. (33)

Our renormalized equation (33) together with the
renormalized gap equations (32) enable us to sum seag-
ulls and bubble graphs in such a way that perturbative
renormalizability is preserved. To renormalize Γ 1PI, it is
sufficient to renormalize Γ 2PPI using a mass independent
renormalization scheme such as MS, calculate the renor-
malized local composite operators ∆R,ij from the gap
equations, and substitute them back in (33). The advan-
tage of the 2PPI expansion is that with the same (or
even less) calculational effort as goes into the perturba-
tive calculation of Γ 1PI, the seagull and bubble graphs
are summed order by order. The gap equations are local
and can easily be solved numerically.

The previous analysis was independent of temperature.
Because Γ 1PI can be renormalized at finite T with the
counterterms at T = 0, the same goes through for Γ 2PPI.
Therefore, our renormalized equations (32) and (33) are
valid at finite T .

4 Goldstone’s theorem

If we choose m2
ij = m2δij , we can make use of the O(N)

symmetry to define the renormalized effective massesmR,σ

andmR,π and renormalized composite operators∆R,σ and
∆R,π by

m2
R,ij =

ϕiϕj

ϕ2 m
2
R,σ +

(
δij − ϕiϕj

ϕ2

)
m2

R,π. (34)

∆R,ij =
ϕiϕj

ϕ2 ∆R,σ +
(
δij − ϕiϕj

ϕ2

)
∆R,π, (35)

so that (3) becomes

m2
R,σ = m2 +

3λ
2

[
ϕ2 +∆R,σ +

N − 1
3

∆R,π

]
, (36)

m2
R,π = m2 +

λ

2
[
ϕ2 +∆R,σ + (N + 1)∆R,π

]
.

Because of O(N) symmetry, m2
R,σ,m

2
R,π, ∆R,σ and ∆R,π

are O(N) invariant functions of ϕi. The relation between
the renormalized 1PI and 2PPI expansion now simplifies
to

Γ 1PI(m2, ϕ) = S(ϕ) + Γ 2PPI
q,R

(
m2

R,σ,m
2
R,π, ϕ

)
−λ

8

∫
dDx

[
3∆2

R,σ + (N2 − 1)∆2
R,π

+2(N − 1)∆R,σ∆R,π

]
, (37)
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and the gap equations become

δΓ 2PPI
q,R

δm2
R,σ

=
∆R,σ

2
,

δΓ 2PPI

δm2
R,π

= (N − 1)
∆R,π

2
. (38)

Since because of O(N) symmetry, the effective masses
mR,σ and mR,π and the composite operators ∆R,σ and
∆R,π are O(N) invariant, Goldstone’s theorem must be
obeyed at any loop order of the 2PPI expansion. To check
this explicitly, we should not make the mistake of identi-
fying the effective mass mR,π with the real physical pion
mass mπ, defined as the pole in the pion propagator. This
pole should occur at p2 = 0 and hence we can use the effec-
tive action at p = 0, i.e. the effective 1PI potential. Using
(37), the renormalized 1PI effective potential becomes

V 1PI
R (m2, ϕ) = V (ϕ) + V 2PPI

q,R
(
m2

R,σ,m
2
R,π, ϕ

2) (39)

−λ
8
(
3∆2

R,σ + (N2 − 1)∆2
R,π + 2(N − 1)∆R,σ∆R,π

)
.

Since V 2PPI
q,R is O(N) invariant we can use the standard

argument to show that ∂2V 1PI/∂ϕi∂ϕj has N − 1 zero
eigenvalues at any order of the 2PPI loop expansion. More
explicitly, we find from (35), (36) and (38) that

∂V 1PI
R

∂ϕi
= ϕi

(
m2 +

λ

2
ϕ2 +

3λ
2

(
∆R,σ +

N − 1
3

∆R,π

)

+ 2
∂V 2PPI

q,R

∂ϕ2

)
, (40)

and

∂2V 1PI
R

∂ϕi∂ϕj
= δij ×

(
m2 +

λϕ2

2
(41)

+
3λ
2

(
∆R,σ +

N − 1
3

∆R,π

)
+ 2

∂V 2PPI
q,R

∂ϕ2

)

+λϕiϕj

[
1 + 3

∂∆R,σ

∂ϕ2 + (N − 1)
∂∆R,π

∂ϕ2 + 4
∂2V 2PPI

q,R

(∂ϕ2)2

]
.

So, we have N − 1 massless particles if

m2
π = m2 +

λ

2
ϕ2 +

3λ
2

(
∆R,σ +

N − 1
3

∆R,π

)
+ 2

∂V 2PPI
q,R

∂ϕ2

= 0. (42)

Using (40) we conclude that the masslessness of the pions
is nothing else than the equation of motion in the case of
spontaneous symmetry breaking.

5 The effective potential
at finite temperature

In this section, we will calculate the effective potential at
finite T using the 2PPI expansion at one loop. Since there

are (N − 1) effective masses mR,π and one mass mR,σ

running in the one loop vacuum diagram, we have

V 2PPI
q

(
m2

R,σ,m
2
R,π, ϕ

2) =
1
2

∑∫
ln(k2 +m2

R,σ)

+
N − 1

2

∑∫
ln(k2 +m2

R,π), (43)

where ∑∫
= T

∑
ωn

∫
d3p

(2π)3
, (44)

and the Matsubara frequencies are denoted by ωn. We
can simply renormalize V 2PPI

q using for example the MS
scheme and calculate the renormalized VEV of the com-
posite operators from the gap equations (38). We find at
one loop

V 2PPI
q,R =

m4
R,σ

64π2

(
ln
m2

R,σ

µ2 − 3
2

)

+ (N − 1)
m4

R,π

64π2

(
ln
m2

R,π

µ2 − 3
2

)

+ QT (mR,σ) + (N − 1)QT (mR,π), (45)

where

QT (m) = T
∫

d3q

(2π)3
ln
(

1 − e−ωq/T
)
. (46)

The effective 1PI potential then reads

V 1PI
R (m2, ϕ) =

m2

2
ϕ2 +

λ

8
ϕ4 +

m4
R,σ

64π2

(
ln
m2

R,σ

µ2 − 3
2

)

+(N − 1)
m4

R,π

64π2

(
ln
m2

R,π

µ2 − 3
2

)
+QT (mR,σ)

+(N − 1)QT (mR,π) (47)

−λ
8
(
3∆2

R,σ + (N2 − 1)∆2
R,π + 2(N − 1)∆R,σ∆R,π

)
,

with

∆R,∗ =
∑∫

1
k2 +m2

R,∗

=
m2

R,∗
16π2

(
ln
m2

R,∗
µ2 − 1

)
+ PT (mR,∗), (48)

where

PT (m) = 2
∂

∂m2QT (m2) =
∫

d3q

(2π)3
nB(ωq)
ωq

. (49)

Our expression (47) together with the gap equations
(48) and the definition of the effective masses (36) com-
pletely agree with previously published results [4,10] ob-
tained using the CJT approach at the daisy and super-
daisy order (2PI expansion). The advantage of our 2PPI
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Fig. 6. Effective potential V (ϕ) at T = 186, 192, 200, 208 for
λ = 90.2/3

expansion is that we arrive quite simply and naturally at
this result keeping only the one loop term while the 2PI
approach has to keep part of the two loop graphs (the
two bubble graph) and the simple expression (47) is only
obtained after some rearrangement. Furthermore, one can
easily calculate higher order terms in the 2PPI expansion,
while in the 2PI expansion it is very difficult to go beyond
the Hartree approximation because of the non-locality of
the gap equations.

In our approach, renormalization of the non-perturba-
tive results is straightforward. This is because we renor-
malize the effective 2PPI potential and hence the gap
equations before we try solving them. If one does it the
other way around as in [4], perturbative renormalizability
is apparently spoiled. This is because in the resummation
(see Sect. 3), parts of the counterterms (the 2PPR parts)
have to be included at all orders, and it is very difficult
if not impossible to do this once the gap equations are
solved and whole classes of diagrams have already been
summed.

As to our numerical results, they coincide (at least for
that part concerning the effective potential) with the CJT
results obtained for example in [10]. We take the N = 4
Gell-Mann–Levy linear σ-model, relevant for QCD and
use the parameter choice of Nemoto et al. [10]: λ = 90.2/3
(our λ differs from the one in [10] by a factor of 3 at
N = 4), µ = 320 MeV, m2 = −122375 MeV2. Our re-
sults are in the chiral limit. Extension to real pion masses
is trivial. In Fig. 6, we display the effective potential at
T = 186, 192, 200 and 208 MeV. We clearly see a first order
phase transition around Tc = 200 MeV. This agrees with
other mean field approaches [15,16,5,10]. We also evalu-
ated the effective potential for other values of λ, down to
λ = 1/3. We found qualitatively similar behavior and in
any case a first order phase transition. The renormaliza-
tion group, however, leads us to believe that the actual
phase transition of the O(4) linear sigma model should be
second order. There are suggestions [10] that inclusion of
the two loop setting sun diagram could change the phase
transition from first to second order. This has been shown
to be the case for N = 1 (λφ4 theory) by Chiku [22] using
the optimized perturbation theory and by Smet et al. [23]
using the 2PPI expansion at two loop order.

6 The σ-meson mass

Because of its relevance in the context of ultrarelativistic
heavy-ion collisions, the σ-resonance has been thoroughly
studied in various models [18,19,6,10]. In the CJT ap-
proach to the O(4) linear σ-model, the σ-meson mass has
been studied in [10] and defined via the effective potential.
The physical σ-meson, however, is defined via the effective
action as a solution of the mass equation∫

d4xeip(x−y) δ2Γ

δϕj(y)δϕi(x)
= 0, (50)

for −p2. At finite temperature, the propagators are no
longer Lorentz invariant. They are functions of p20 and p2

instead of p2. The standard prescription is to define mass
at rest with respect to the heatbath; this means putting
p2 = 0 and solving (50) for −p20. Using the fact that at
one loop the 2PPI effective action only depends on ϕi

through the effective masses, it follows from (37) and the
gap equations (38) that

δ2Γ

δϕj(y)δϕi(x)
=

[
− ∂2 +m2 +

λ

2
ϕ2(x) (51)

+
3λ
2

(
∆R,σ(x) +

N − 1
3

∆R,π(x)
)
δij + λϕi(x)ϕj(y)

]

×δ(x− y) +
3λ
2
ϕi(x)

[
δ∆R,σ(x)
δϕj(y)

+
N − 1

3
δ∆π(x)
δϕj(y)

]
.

If we choose ϕi = δiNϕ and use (36) for m2
R,σ, we can

rewrite the σ mass equation as

p2 +m2
R,σ +3λϕ2

(
∆′

R,σ(p) +
N − 1

3
∆′

R,π(p)
)

= 0, (52)

with

∆′
R,∗(p) =

∫
d4xeip(x−y) ∂∆R,∗(x)

∂ϕ2(y)
. (53)

From the equation of motion (42) at one loop and (36) it
follows that m2

R,σ = λϕ2, which is the tree-level mass of
the σ-meson (the condensate ϕ is of course determined by
the full expression (42) containing quantum corrections).
Therefore the self-energy of the σ-meson at one loop in
the 2PPI expansion is given by

Σσ(p) = 3λϕ2
(
∆′

R,σ(p) +
N − 1

3
∆′

R,π(p)
)
. (54)

This self-energy can be calculated exactly. From (48)
we have

∆′
R,∗(p) = −B∗

∂m2
R,∗

∂ϕ2 , (55)

where

B∗ = B(m2
R,∗, p) = Σ

∫
1

q2 +m2
R,∗

1
(q + p)2 +m2

R,∗
.

(56)
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Fig. 7. Feynman diagrams contributing to σ-propagator at one loop in the 2PPI expansion

From (55) and the effective mass equations (36) we derive
the system

∆′
R,σ = −Bσ

(
3λ
2

+
3λ
2
∆′

R,σ +
λ

2
(N − 1)∆′

R,π

)
,

∆′
R,π = −Bπ

(
λ

2
+
λ

2
∆′

R,σ +
λ

2
(N + 1)∆′

R,π

)
. (57)

This system can be easily solved and we finally obtain for
the self-energy of the σ-meson

Σσ(p) = −λ2ϕ2 (58)

× 9Bσ + (N − 1)Bπ + 3λ(N + 2)BσBπ

2 + 3λBσ + λ(N + 1)Bπ + λ2(N + 1)BσBπ
.

Adding the effective mass m2
R,σ (which runs in the tree-

level propagators of the 2PPI expansion) to the one loop
2PPI self-energy (58), we find we have summed an infinite
series of Feynman diagrams given in Fig. 7. The propaga-
tors in the internal lines are σ- as well as π-propagators
and they carry effective masses mR,σ and mR,π. This sum
goes beyond the daisy–superdaisy resummed propagator
which is given by the first term only (simple effective
Hartree mass m2

R,σ). In fact we have summed all 2PPR
contributions to the self-energy which can be made from
one loop 2PPI subdiagrams. This is of course consistent
with the fact that we have calculated the σ-meson propa-
gators from the one loop 2PPI effective action.

In the same way, we can calculate the one loop 2PPI
mass of the pion. Our one loop 2PPI approximation again
goes beyond the daisy–superdaisy result and we find that
the self-energy is just enough to make the pion mass ex-
actly zero. This is of course easily understood as the ef-
fective action at p = 0 is nothing else than the effective
potential and we have already shown on general grounds
in Sect. 4 that the second derivative of the effective poten-
tial with respect to the pion fields is zero at the minimum
of the potential.

To obtain numerical results we have to evaluate
B(m2

R,∗, p) at finite T . Using dimensional regularization
and the MS scheme, we find

BR(m2, p) = − 1
16π2

×


ln

m2

µ2 +

√
1 +

4m2

p2
ln




√
1 +

4m2

p2
+ 1

√
1 +

4m2

p2
− 1


− 2




+BT (m2, p), (59)

Fig. 8. Two ways to determine the sigma mass as a function
of the temperature. Upper line: using the second derivative of
the effective potential; lower line: using the second variational
derivative of the effective action

with

BT (m2, p) =
∫

d3q

(2π)3
nB(ωq)

× 1
ωq

ω2
q+p − ω2

q + p20
(ω2

q+p − ω2
q + p20)2 + 4ω2

qp
2
0

(60)

+nB(ωq+p)
1

ωq+p

−ω2
q+p + ω2

q + p20
(−ω2

q+p + ω2
q + p20)2 + 4ω2

q+pp
2
0
.

We determine the σ-meson mass as the zero in p20(p2 = 0)
of the real part of the inverse σ-propagator p2 +m2

R,σ +
Re(Σσ(p20,p

2 = 0)). We again use the parameters λ =
90.2/3, µ = 320 MeV,m2 = −122375 MeV2. In Nemoto et
al. [10], the σ-meson mass was determined from the effec-
tive potential and the parameters were chosen such that
mσ = 600 MeV at T = 0. Our more physical definition
of the σ mass gives mσ = 548.3 MeV at T = 0. So the
correct definition of mass only gives a 10% change and
therefore, this choice of parameters is acceptable given
the ambiguity in the experimental value for the σ-meson
mass. In Fig. 8 we display the physical σ-meson mass (zero
in p20 of p20 +m2

R,σ + Re(Σσ(p0,0)) and the σ-meson mass
as determined from the effective potential and equal to
m2

R,σ + Σσ(0,0), at finite temperature. The influence of
temperature is to decrease to σ-meson mass, a well-known
effect established with other methods [6] or in other mod-
els [18,19].

7 Summary and conclusions

In this paper, we have studied the O(N) linear σ-model
at finite temperature using the 2PPI expansion. We have
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shown that at one loop order in this expansion, the Hartree
result is reproduced in a very efficient way. We have given
an all orders proof that this expansion can be renormal-
ized with the usual counterterms if a mass independent
renormalization scheme is used. We have shown that at
finite temperature and each order of the 2PPI expansion,
Goldstone’s theorem is obeyed. We have calculated the ef-
fective potential for N = 4 and found a first order phase
transition as was to be expected from a mean field approxi-
mation. However, whereas previous methods to obtain the
Hartree result such as the CJT formalism are very difficult
to apply beyond the mean field level, the 2PPI expansion
is ideally suited to investigate post-Hartree corrections to
various thermodynamical quantities. For example, we cal-
culated the one loop 2PPI result for the σ-meson mass and
showed that it sums an infinite series of diagrams which go
beyond the daisy and superdaisy approximation (Hartree
approximation). As to the thermodynamics of the phase
transition, higher order loops in the 2PPI expansion can
give important corrections which could change the order
of the phase transition [22,23]. Also, one of us (Verschelde)
showed in [20] that the 2PPI expansion can be renormal-
ization group resummed. The combination of the 2PPI
expansion and the renormalization group may in the fu-
ture lead to a better picture of the thermodynamics of the
O(N) linear σ-model.
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